skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dong, Lu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reconstructing 3D faces with facial geometry from single images has allowed for major advances in animation, generative models, and virtual reality. However, this ability to represent faces with their 3D features is not as fully explored by the facial expression inference (FEI) community. This study therefore aims to investigate the impacts of integrating such 3D representations into the FEI task, specifically for facial expression classification and face-based valence-arousal (VA) estimation. To accomplish this, we first assess the performance of two 3D face representations (both based on the 3D morphable model, FLAME) for the FEI tasks. We further explore two fusion architectures, intermediate fusion and late fusion, for integrating the 3D face representations with existing 2D inference frameworks. To evaluate our proposed architecture, we extract the corresponding 3D representations and perform extensive tests on the AffectNet and RAF-DB datasets. Our experimental results demonstrate that our proposed method outperforms the state-of-the-art AffectNet VA estimation and RAF-DB classification tasks. Moreover, our method can act as a complement to other existing methods to boost performance in many emotion inference tasks. 
    more » « less
  2. This work aims to generate natural and diverse group motions of multiple humans from textual descriptions. While singleperson text-to-motion generation is extensively studied, it remains challenging to synthesize motions for more than one or two subjects from in-the-wild prompts, mainly due to the lack of available datasets. In this work, we curate human pose and motion datasets by estimating pose information from large-scale image and video datasets. Our models use a transformer-based diffusion framework that accommodates multiple datasets with any number of subjects or frames. Experiments explore both generation of multi-person static poses and generation of multiperson motion sequences. To our knowledge, our method is the first to generate multi-subject motion sequences with high diversity and fidelity from a large variety of textual prompts. 
    more » « less
  3. Achieving expressive 3D motion reconstruction and automatic generation for isolated sign words can be challenging, due to the lack of real-world 3D sign-word data, the complex nuances of signing motions, and the cross-modal understanding of sign language semantics. To address these challenges, we introduce SignAvatar, a framework capable of both word-level sign language reconstruction and generation. SignAvatar employs a transformer-based conditional variational autoencoder architecture, effectively establishing relationships across different semantic modalities. Additionally, this approach incorporates a curriculum learning strategy to enhance the model's robustness and generalization, resulting in more realistic motions. Furthermore, we contribute the ASL3DWord dataset, composed of 3D joint rotation data for the body, hands, and face, for unique sign words. We demonstrate the effectiveness of SignAvatar through extensive experiments, showcasing its superior reconstruction and automatic generation capabilities. The code and dataset are available on the project page 
    more » « less
  4. Sign language is a complex visual language, and automatic interpretations of sign language can facilitate communication involving deaf individuals. As one of the essential components of sign language, fingerspelling connects the natural spoken languages to the sign language and expands the scale of sign language vocabulary. In practice, it is challenging to analyze fingerspelling alphabets due to their signing speed and small motion range. The usage of synthetic data has the potential of further improving fingerspelling alphabets analysis at scale. In this paper, we evaluate how different video-based human representations perform in a framework for Alphabet Generation for American Sign Language (ASL). We tested three mainstream video-based human representations: twostream inflated 3D ConvNet, 3D landmarks of body joints, and rotation matrices of body joints. We also evaluated the effect of different skeleton graphs and selected body joints. The generation process of ASL fingerspelling used a transformerbased Conditional Variational Autoencoder. To train the model, we collected ASL alphabet signing videos from 17 signers with dynamic alphabet signing. The generated alphabets were evaluated using automatic metrics of quality such as FID, and we also considered supervised metrics by recognizing the generated entries using Spatio-Temporal Graph Convolutional Networks. Our experiments show that using the rotation matrices of the upper body joints and the signing hand give the best results for the generation of ASL alphabet signing. Going forward, our goal is to produce articulated fingerspelling words by combining individual alphabets learned in this work. 
    more » « less
  5. Sign words are the building blocks of any sign language. In this work, we present wSignGen, a word-conditioned 3D American Sign Language (ASL) generation model dedicated to synthesizing realistic and grammatically accurate motion sequences for sign words. Our approach leverages a transformer-based diffusion model, trained on a curated dataset of 3D motion meshes from word-level ASL videos. By integrating CLIP, wSignGen offers two advantages: image-based generation, which is particularly useful for children learning sign language but not yet able to read, and the ability to generalize to unseen synonyms. Experiments demonstrate that wSignGen significantly outperforms the baseline model in the task of sign word generation. Moreover, human evaluation experiments show that wSignGen can generate high-quality, grammatically correct ASL signs effectively conveyed through 3D avatars. 
    more » « less
  6. Language-guided human motion synthesis has been a challenging task due to the inherent complexity and diversity of human behaviors. Previous methods face limitations in generalization to novel actions, often resulting in unrealistic or incoherent motion sequences. In this paper, we propose ATOM (ATomic mOtion Modeling) to mitigate this problem, by decomposing actions into atomic actions, and employing a curriculum learning strategy to learn atomic action composition. First, we disentangle complex human motions into a set of atomic actions during learning, and then assemble novel actions using the learned atomic actions, which offers better adaptability to new actions. Moreover, we introduce a curriculum learning training strategy that leverages masked motion modeling with a gradual increase in the mask ratio, and thus facilitates atomic action assembly. This approach mitigates the overfitting problem commonly encountered in previous methods while enforcing the model to learn better motion representations. We demonstrate the effectiveness of ATOM through extensive experiments, including text-to-motion and action-to-motion synthesis tasks. We further illustrate its superiority in synthesizing plausible and coherent text-guided human motion sequences. 
    more » « less
  7. Abstract A novel, selective and high‐yielding palladium‐catalyzed carbonylative arylation of a variety of weakly acidic (pKa25–35 in DMSO) benzylic and heterobenzylic C(sp3)−H bonds with aryl bromides has been achieved. This system is applicable to a range of pro‐nucleophiles for access to sterically and electronically diverse α‐aryl or α,α‐diaryl ketones, which are ubiquitous substructures in biologically active compounds. The Josiphos SL‐J001‐1‐based palladium catalyst was identified as the most efficient and selective, enabling carbonylative arylation with aryl bromides under 1 atm CO to provide the ketone products without the formation of direct coupling byproducts. Additionally, (Josiphos)Pd(CO)2was identified as the catalyst resting state. A kinetic study suggests that the oxidative addition of aryl bromides is the turnover‐limiting step. Key catalytic intermediates were also isolated. 
    more » « less